Wind Assisted Ship Propulsion

A win-wind solution to decarbonise the maritime sector?

TKI Maritime event 2024

Albert Rijkens

Program Manager
 Wind Assisted Ship Propulsion

Over 80 % of international trade is carried by sea

1 I

GHG emissions are 3% of global total

98.8% of the world fleet sails on fossil fuels

Average ship age: 22.2 years

ŤUDelft

Source: UNCTAD review of maritime transport 2023

Towards zero emission

Regulations

- Generate a level playing field
- Emission regulations are gradually tightening
- Stimulus to reduce carbon intensity of ships by 40% by 2030
- Aim for full decarbonization by 2050
- > What can we do to meet this challenge?
 - Efficiency gains in operations
 - Slow steaming
 - Alternative fuels
 - Air lubrication systems
 - Wind Assisted Ship Propulsion (WASP)

This is a scale challenge

> World fleet

- 56.500 vessels above 1000 GT
- Tankers, dry bulk and container ships are each responsible for 25% of the global shipping emissions
- Energy consumption shipping sector
 - Fossil fuel energy consumption of ships above 5000 GT is approx. 2500 TWh
 - World renewable electricity generation is about 8500 TWh
 - Assume E-fuel production efficiency of 50%
 - E-Fuel production for shipping would require approximately 60% of today's total world renewable energy production
- > Other sectors have similar ambitions to reduce GHG emissions
 - Industry
 - Aviation
 - Road transport

Shipping emissions are headed in the wrong direction

Carbon dioxide emissions by main vessel types, tons, 2012–2023

Note: The group "other" includes vehicles and roll-on/roll-off ships, passenger ships, offshore ships and service and miscellaneous ships.

Our World in Data

Source: UNCTAD based on data provided by Marine Benchmark, June 2023.

1. Watt-hour: A watt-hour is the energy delivered by one watt of power for one hour. Since one watt is equivalent to one joule per second, a watt-hour is equivalent to 3600 joules of energy. Metric prefixes are used for multiples of the unit, usually: - kilowatt-hours (kWh), or a thousand watt-hours. - Megawatt-hours (MWh), or a million watt-hours. - Gigawatt-hours (GWh), or a billion watt-hours. - Terawatt-hours (TWh), or a trillion watt-hours.

Short term impact: Retrofitting

- > Why retrofit?
 - Global shipyard capacity can produce approx. 1500 newbuild vessel above 1000 GT
 - If we started building only green ships today, it would take 38 years to replace the global fleet

WASP Fleet

- Currently about 50 ships with WASP in operation
- Majority have retrofitted sail systems
- The number of WASP installations double each year
- Reported fuel savings range between 5 20%
- There are dozens of different (small) wind propulsion technology providers
- Best suited vessel types
 - Bulk carriers / General cargo vessels
 - Ro-Ro ships
 - Tankers
- Direct reduction of emissions

Longer term impact: Newbuild solutions

- More drastic design change
 - Design: Ship and deck configuration
 - Aerodynamics: Sail systems
 - Hydrodynamic: Hull form and appendage design
 - Propulsion system: Propellor and rudder design

Advantages

- Potential fuel savings up to 40 50%
- Can be a technology enabler for alternative fuels on ships with large autonomy

WASP Research Program

TU Delft vision

We aim to make an 'impact for a better society'. We take on global challenges that affect everyone personally: the climate, the energy transition, urban growth, digital society, health.

WASP program ambition

- Facilitate the development of high performing wind-assisted ships by increasing knowledge of WASP through research and education
- Program characteristics
 - Interdisciplinary approach
 - Applied oriented research
 - Collaboration with (industry) partners
 - Dedicated program team
 - Facilitates 12 PhD students starting this year

dr.ir Gunnar Jacobi Hydrodynamic Research Lead

dr.ir Alberto Rius Vidales Aerodynamic Research Lead

dr.ir Albert Rijkens Program Manager

TUDelft

Interdisciplinary research program

Ship Hydrodynamics

WASP program overview

Fluid dynamics

Aerodynamics

Fundamental flow physics – Rotor flow under quasi-static and dynamic conditions

Fundamental flow physics – Experimental research of scaled rotor flow under static conditions

Modified rotor design and flow control for performance enhancement

Aerodynamics of multi-rotors in ship configuration

Hydrodynamics

Scale-resolving simulation of wind-assisted ships and low-fidelity model optimization

From model to full-scale - Benchmark towing tank tests for wind assisted ships and performance assessment of auxiliary appendages

Propeller and rudder performance in wind-assisted ship propulsion

Design & operation

Design

Multi-fidelity modeling for design space exploration for purpose-built wind-assisted ships

Structures

Multiaxial and variable amplitude fatigue accumulation from WASP

Propulsion systems

Enhancing Efficiency and Reducing Emissions: Investigating partial load performance of reciprocating IC Engines in WASP applications

Control systems

Dynamic behaviour and dynamic stability analysis of wind-assisted ship powertrains for enhancing control strategies

Sustainable & social impact

Transport & Logistics

Optimizing Logistics for Wind-Assisted Shipping

Wind thrust & Loads

Sailing Performance

Propulsion & Control

Sustainable Operation

Fluid dynamics - Aerodynamics

- High fidelity numerical simulations
 - Simulations on large rotor systems in atmospheric surface layer
 - Model dynamic conditions due to ship motions and unsteady inflow
- Wind tunnel & full-scale testing
 - Experimentally simulate full-scale operating conditions
 - Investigate fundamental flow features that determine rotor performance
- Rotor design optimisation
 - Identification of performance improvement areas and metrics
 - Active off-surface & passive surface embedded flow control
- Aerodynamics of multi-rotors in ship configuration
 - Rotor-rotor and ship-rotor interactions
- Lower fidelity wake model to design multi-rotor configurations on deck **Solution Delft**

Fluid dynamics - Hydrodynamics

- Wind assisted systematic hull variations
 - Perform high fidelity simulations to capture hull flow structures at drift
 - Develop a low fidelity numerical framework that allows systematic studies
 on new WASP hull forms
- Appendage design and scaling effects
 - High fidelity measurements of wind assisted ships with appendages
 - Develop a method for scaling similarity for boundary layer appendages
- Propeller & rudder performance in wind-assisted ships propulsion
 - Systematically test the wide range of operating conditions
 - Building a physics-informed performance model

Design & Operation

- Design space exploration of future wind-assisted ships
 - Multi-fidelity modelling framework
 - Multi-objective exploration and optimisation
- Structural fatigue accumulations from WASP systems
 - Full-scale multi-directional loading and response characterisation
 - Fatigue limit state performance calculations
- Reducing GHG emissions of ICE in WASP applications
 - Development of a numerical ICE model that enables emission prediction in part- and low load operation
 - Evaluate different WASP propulsion system configurations
- Enhanced control strategies for wind assisted ships
 - Development of holistic control strategies
 - Real-world validation and application of developed methodologies

Sustainable and Social impact

- Optimizing Logistics for Wind-Assisted Shipping
 - Logistic planning and decision support
 - Routing simulations and scheduling
 - WASP port calls with physical constraints
 - Cost and market analysis

A win-win-wind solution?

- Wind energy
 - Wind is a free, inexhaustible and zero-carbon energy source
 - Wind energy requires no additional infrastructure, distribution network or storage facilities in port
 - No competition with other sectors that depend on scarce renewable energy to make the transition
- WASP technology
 - Short term GHG emission reduction with retrofitted installations
 - Longer term impact with bigger savings on purpose-build WASP ships
 - The technology needs develop to a more mature stage
 - Enabling technology for alternative fuels on ships with large autonomy

Wind Assisted Ship Propulsion

Thank you

TKI Maritime event 2024

Albert Rijkens

Program Manager
 Wind Assisted Ship Propulsion

